
E-Mail: aram.safrastyan@uni-jena.de
Publications
2024
Micheel, Julia; Safrastyan, Aram; Aron, Franziska; Wollny, Damian
Exploring the impact of primer length on efficient gene detection via high-throughput sequencing Journal Article
In: Nature Communications, vol. 15, iss. 1, 2024.
@article{nokey_64,
title = {Exploring the impact of primer length on efficient gene detection via high-throughput sequencing},
author = {Julia Micheel and Aram Safrastyan and Franziska Aron and Damian Wollny},
doi = {10.1038/s41467-024-49685-0},
year = {2024},
date = {2024-07-12},
journal = {Nature Communications},
volume = {15},
issue = {1},
abstract = {Reverse transcription (RT) is a crucial step in most RNA analysis methods. Optimizing protocols for this initial stage is critical for effective target detection, particularly when working with limited input RNA. Several factors, such as the input material quality and reaction conditions, influence RT efficiency. However, the effect of RT primer length on gene detection efficiency remains largely unknown. Thus, we investigate its impact by generating RNA-seq libraries with random RT primers of 6, 12, 18, or 24 nucleotides. To our surprise, the 18mer primer shows superior efficiency in overall transcript detection compared to the commonly used 6mer primer, especially in detecting longer RNA transcripts in complex human tissue samples. This study highlights the critical role of primer length in RT efficiency, which has significant potential to benefit various transcriptomic assays, from basic research to clinical diagnostics, given the central role of RT in RNA-related analyses.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2023
Safrastyan, Aram; Siederdissen, Christian Höner Zu; Wollny, Damian
Decoding cell-type contributions to the cfRNA transcriptomic landscape of liver cancer Journal Article
In: Hum Genomics, vol. 17, iss. 1, pp. 90, 2023.
@article{nokey_49,
title = {Decoding cell-type contributions to the cfRNA transcriptomic landscape of liver cancer},
author = {Aram Safrastyan and Christian {Höner Zu Siederdissen} and Damian Wollny},
doi = {10.1186/s40246-023-00537-w},
year = {2023},
date = {2023-10-05},
journal = {Hum Genomics},
volume = {17},
issue = {1},
pages = {90},
abstract = {Background
Liquid biopsy, particularly cell-free RNA (cfRNA), has emerged as a promising non-invasive diagnostic tool for various diseases, including cancer, due to its accessibility and the wealth of information it provides. A key area of interest is the composition and cellular origin of cfRNA in the blood and the alterations in the cfRNA transcriptomic landscape during carcinogenesis. Investigating these changes can offer insights into the manifestations of tissue alterations in the blood, potentially leading to more effective diagnostic strategies. However, the consistency of these findings across different studies and their clinical utility remains to be fully elucidated, highlighting the need for further research in this area.
Results
In this study, we analyzed over 350 blood samples from four distinct studies, investigating the cell type contributions to the cfRNA transcriptomic landscape in liver cancer. We found that an increase in hepatocyte proportions in the blood is a consistent feature across most studies and can be effectively utilized for classifying cancer and healthy samples. Moreover, our analysis revealed that in addition to hepatocytes, liver endothelial cell signatures are also prominent in the observed changes. By comparing the classification performance of cellular proportions to established markers, we demonstrated that cellular proportions could distinguish cancer from healthy samples as effectively as existing markers and can even enhance classification when used in combination with these markers.
Conclusions
Our comprehensive analysis of liver cell-type composition changes in blood revealed robust effects that help classify cancer from healthy samples. This is especially noteworthy, considering the heterogeneous nature of datasets and the etiological distinctions of samples. Furthermore, the observed differences in results across studies underscore the importance of integrative and comparative approaches in the future research to determine the consistency and robustness of findings. This study contributes to the understanding of cfRNA composition in liver cancer and highlights the potential of cellular deconvolution in liquid biopsy.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Liquid biopsy, particularly cell-free RNA (cfRNA), has emerged as a promising non-invasive diagnostic tool for various diseases, including cancer, due to its accessibility and the wealth of information it provides. A key area of interest is the composition and cellular origin of cfRNA in the blood and the alterations in the cfRNA transcriptomic landscape during carcinogenesis. Investigating these changes can offer insights into the manifestations of tissue alterations in the blood, potentially leading to more effective diagnostic strategies. However, the consistency of these findings across different studies and their clinical utility remains to be fully elucidated, highlighting the need for further research in this area.
Results
In this study, we analyzed over 350 blood samples from four distinct studies, investigating the cell type contributions to the cfRNA transcriptomic landscape in liver cancer. We found that an increase in hepatocyte proportions in the blood is a consistent feature across most studies and can be effectively utilized for classifying cancer and healthy samples. Moreover, our analysis revealed that in addition to hepatocytes, liver endothelial cell signatures are also prominent in the observed changes. By comparing the classification performance of cellular proportions to established markers, we demonstrated that cellular proportions could distinguish cancer from healthy samples as effectively as existing markers and can even enhance classification when used in combination with these markers.
Conclusions
Our comprehensive analysis of liver cell-type composition changes in blood revealed robust effects that help classify cancer from healthy samples. This is especially noteworthy, considering the heterogeneous nature of datasets and the etiological distinctions of samples. Furthermore, the observed differences in results across studies underscore the importance of integrative and comparative approaches in the future research to determine the consistency and robustness of findings. This study contributes to the understanding of cfRNA composition in liver cancer and highlights the potential of cellular deconvolution in liquid biopsy.
Safrastyan, Aram; Wollny, Damian
Detection of reproducible liver cancer specific ligand-receptor signaling in blood Journal Article
In: bioRxiv, 2023.
@article{nokey_48,
title = {Detection of reproducible liver cancer specific ligand-receptor signaling in blood},
author = {Aram Safrastyan and Damian Wollny},
doi = {10.1101/2023.09.25.559274},
year = {2023},
date = {2023-09-25},
urldate = {2023-09-25},
journal = {bioRxiv},
abstract = {Cell-cell communication mediated by ligand-receptor interactions (LRI) is critical to coordinating diverse biological processes in homeostasis and disease. Lately, our understanding of these processes has greatly expanded through the inference of cellular communication, utilizing RNA extracted from bulk tissue or individual cells. Considering the challenge of obtaining tissue biopsies for these approaches, we considered the potential of studying cell-free RNA obtained from blood. To test the feasibility of this approach, we used the BulkSignalR algorithm across 295 cell-free RNA samples and compared the LRI profiles across multiple cancer types and healthy donors. Interestingly, we detected specific and reproducible LRIs particularly in the blood of liver cancer patients compared to healthy donors. We found an increase in the magnitude of hepatocyte interactions, notably hepatocyte autocrine interactions in liver cancer patients. Additionally, a robust panel of 30 liver cancer-specific LRIs presents a bridge linking liver cancer pathogenesis to discernible blood markers. In summary, our approach shows the plausibility of detecting liver LRIs in blood and builds upon the biological understanding of cell-free transcriptomes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2022
Safrastyan, Aram; Wollny, Damian
Network analysis of hepatocellular carcinoma liquid biopsies augmented by single-cell sequencing data Journal Article
In: Front Genet, vol. 13, pp. 921195, 2022.
@article{nokey,
title = {Network analysis of hepatocellular carcinoma liquid biopsies augmented by single-cell sequencing data},
author = {Aram Safrastyan and Damian Wollny},
doi = {10.3389/fgene.2022.921195},
year = {2022},
date = {2022-08-25},
journal = {Front Genet},
volume = {13},
pages = {921195},
abstract = {Liquid biopsy, the analysis of body fluids, represents a promising approach for disease diagnosis and prognosis with minimal intervention. Sequencing cell-free RNA derived from liquid biopsies has been very promising for the diagnosis of several diseases. Cancer research, in particular, has emerged as a prominent candidate since early diagnosis has been shown to be a critical determinant of disease prognosis. Although high-throughput analysis of liquid biopsies has uncovered many differentially expressed genes in the context of cancer, the functional connection between these genes is not investigated in depth. An important approach to remedy this issue is the construction of gene networks which describes the correlation patterns between different genes, thereby allowing to infer their functional organization. In this study, we aimed at characterizing extracellular transcriptome gene networks of hepatocellular carcinoma patients compared to healthy controls. Our analysis revealed a number of genes previously associated with hepatocellular carcinoma and uncovered their association network in the blood. Our study thus demonstrates the feasibility of performing gene co-expression network analysis from cell-free RNA data and its utility in studying hepatocellular carcinoma. Furthermore, we augmented cell-free RNA network analysis with single-cell RNA sequencing data which enables the contextualization of the identified network modules with cell-type specific transcriptomes from the liver.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Wollny, Damian; Vernot, Benjamin; Wang, Jie; Hondele, Maria; Safrastyan, Aram; Aron, Franziska; Micheel, Julia; He, Zhisong; Hyman, Anthony; Weis, Karsten; Camp, J. Gray; Tang, T-Y Dora; Treutlein, Barbara
Characterization of RNA content in individual phase-separated coacervate microdroplets Journal Article
In: Nat Commun, vol. 13, iss. 1, pp. 2626, 2022.
@article{nokey,
title = {Characterization of RNA content in individual phase-separated coacervate microdroplets},
author = {Damian Wollny and Benjamin Vernot and Jie Wang and Maria Hondele and Aram Safrastyan and Franziska Aron and Julia Micheel and Zhisong He and Anthony Hyman and Karsten Weis and J. Gray Camp and T-Y Dora Tang and Barbara Treutlein},
url = {10.1038/s41467-022-30158-1},
year = {2022},
date = {2022-05-12},
urldate = {2022-05-12},
journal = {Nat Commun},
volume = {13},
issue = {1},
pages = {2626},
abstract = {Condensates formed by complex coacervation are hypothesized to have played a crucial part during the origin-of-life. In living cells, condensation organizes biomolecules into a wide range of membraneless compartments. Although RNA is a key component of biological condensates and the central component of the RNA world hypothesis, little is known about what determines RNA accumulation in condensates and to which extend single condensates differ in their RNA composition. To address this, we developed an approach to read the RNA content from single synthetic and protein-based condensates using high-throughput sequencing. We find that certain RNAs efficiently accumulate in condensates. These RNAs are strongly enriched in sequence motifs which show high sequence similarity to short interspersed elements (SINEs). We observe similar results for protein-derived condensates, demonstrating applicability across different in vitro reconstituted membraneless organelles. Thus, our results provide a new inroad to explore the RNA content of phase-separated droplets at single condensate resolution.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Micheel, Julia; Safrastyan, Aram; Wollny, Damian
Advances in Non-Coding RNA Sequencing Journal Article
In: Noncoding RNA, vol. 7, no. 4, pp. 70, 2021.
@article{nokey,
title = {Advances in Non-Coding RNA Sequencing},
author = {Julia Micheel and Aram Safrastyan and Damian Wollny
},
doi = {10.3390/ncrna7040070},
year = {2021},
date = {2021-10-30},
journal = {Noncoding RNA},
volume = {7},
number = {4},
pages = {70},
abstract = {Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}