
E-Mail: daniel.desiro@uni-jena.de
Publications
2020
Flores, David Carrasco; Fricke, Markus; Wesp, Valentin; Desirò, Daniel; Kniewasser, Anja; Hölzer, Martin; Marz, Manja; Mittag, Maria
A marine Chlamydomonas sp. emerging as an algal model Journal Article
In: J Phycol, vol. 57, no. 1, pp. 54–69, 2020.
@article{Flores:20,
title = {A marine Chlamydomonas sp. emerging as an algal model},
author = {David Carrasco Flores and Markus Fricke and Valentin Wesp and Daniel Desirò and Anja Kniewasser and Martin Hölzer and Manja Marz and Maria Mittag},
doi = {10.1111/jpy.13083},
year = {2020},
date = {2020-10-11},
urldate = {2020-10-11},
journal = {J Phycol},
volume = {57},
number = {1},
pages = {54--69},
publisher = {Wiley},
abstract = {The freshwater microalga Chlamydomonas reinhardtii, which lives in wet soil, has served for decades as a model for numerous biological processes, and many tools have been introduced for this organism. Here, we have established a stable nuclear transformation for its marine counterpart, Chlamydomonas sp. SAG25.89, by fusing specific cis-acting elements from its Actin gene with the gene providing hygromycin resistance and using an elaborated electroporation protocol. Like C. reinhardtii, Chlamydomonas sp. has a high GC content, allowing reporter genes and selection markers to be applicable in both organisms. Chlamydomonas sp. grows purely photoautotrophically and requires ammonia as a nitrogen source because its nuclear genome lacks some of the genes required for nitrogen metabolism. Interestingly, it can grow well under both low and very high salinities (up to 50 g · L-1) rendering it as a model for osmotolerance. We further show that Chlamydomonas sp. grows well from 15 to 28°C, but halts its growth at 32°C. The genome of Chlamydomonas sp. contains some gene homologs the expression of which is regulated according to the ambient temperatures and/or confer thermal acclimation in C. reinhardtii. Thus, knowledge of temperature acclimation can now be compared to the marine species. Furthermore, Chlamydomonas sp. can serve as a model for studying marine microbial interactions and for comparing mechanisms in freshwater and marine environments. Chlamydomonas sp. was previously shown to be immobilized rapidly by a cyclic lipopeptide secreted from the antagonistic bacterium Pseudomonas protegens PF-5, which deflagellates C. reinhardtii.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2019
Mostajo, Nelly F.; Lataretu, Marie; Krautwurst, Sebastian; Mock, Florian; Desirò, Daniel; Lamkiewicz, Kevin; Collatz, Maximilian; Schoen, Andreas; Weber, Friedemann; Marz, Manja; Hölzer, Martin
A comprehensive annotation and differential expression analysis of short and long non-coding RNAs in 16 bat genomes Journal Article
In: NAR Genomics Bioinf, vol. 2, no. 1, pp. lqz006, 2019.
@article{Mostajo:20,
title = {A comprehensive annotation and differential expression analysis of short and long non-coding RNAs in 16 bat genomes},
author = {Nelly F. Mostajo and Marie Lataretu and Sebastian Krautwurst and Florian Mock and Daniel Desirò and Kevin Lamkiewicz and Maximilian Collatz and Andreas Schoen and Friedemann Weber and Manja Marz and Martin Hölzer},
url = {https://www.rna.uni-jena.de/supplements/bats/index.html},
doi = {10.1093/nargab/lqz006},
year = {2019},
date = {2019-09-30},
urldate = {2019-09-30},
journal = {NAR Genomics Bioinf},
volume = {2},
number = {1},
pages = {lqz006},
abstract = {Although bats are increasingly becoming the focus of scientific studies due to their unique properties, these exceptional animals are still among the least studied mammals. Assembly quality and completeness of bat genomes vary a lot and especially non-coding RNA (ncRNA) annotations are incomplete or simply missing. Accordingly, standard bioinformatics pipelines for gene expression analysis often ignore ncRNAs such as microRNAs or long antisense RNAs. The main cause of this problem is the use of incomplete genome annotations. We present a complete screening for ncRNAs within 16 bat genomes. NcRNAs affect a remarkable variety of vital biological functions, including gene expression regulation, RNA processing, RNA interference and, as recently described, regulatory processes in viral infections. Within all investigated bat assemblies, we annotated 667 ncRNA families including 162 snoRNAs and 193 miRNAs as well as rRNAs, tRNAs, several snRNAs and lncRNAs, and other structural ncRNA elements. We validated our ncRNA candidates by six RNA-Seq data sets and show significant expression patterns that have never been described before in a bat species on such a large scale. Our annotations will be usable as a resource (rna.uni-jena.de/supplements/bats) for deeper studying of bat evolution, ncRNAs repertoire, gene expression and regulation, ecology and important host–virus interactions.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2018
Desiro, Daniel; Hölzer, Martin; Ibrahim, Bashar; Marz, Manja
SilentMutations (SIM): a tool for analyzing long-range RNA-RNA interactions in viral genomes and structured RNAs Journal Article
In: Virus Res, vol. 260, pp. 135-141, 2018.
@article{Desiro:18,
title = {SilentMutations (SIM): a tool for analyzing long-range RNA-RNA interactions in viral genomes and structured RNAs},
author = {Daniel Desiro and Martin Hölzer and Bashar Ibrahim and Manja Marz},
url = {https://github.com/desiro/silentMutations},
doi = {10.1016/j.virusres.2018.11.005},
year = {2018},
date = {2018-11-12},
urldate = {2018-11-12},
journal = {Virus Res},
volume = {260},
pages = {135-141},
abstract = {A single nucleotide change in the coding region can alter the amino acid sequence of a protein. In consequence, natural or artificial sequence changes in viral RNAs may have various effects not only on protein stability, function and structure but also on viral replication. In recent decades, several tools have been developed to predict the effect of mutations in structured RNAs such as viral genomes or non-coding RNAs. Some tools use multiple point mutations and also take coding regions into account. However, none of these tools was designed to specifically simulate the effect of mutations on viral long-range interactions. Here, we developed SilentMutations (SIM), an easy-to-use tool to analyze the effect of multiple point mutations on the secondary structures of two interacting viral RNAs. The tool can simulate disruptive and compensatory mutants of two interacting single-stranded RNAs. This allows a fast and accurate assessment of key regions potentially involved in functional long-range RNA-RNA interactions and will eventually help virologists and RNA-experts to design appropriate experiments. SIM only requires two interacting single-stranded RNA regions as input. The output is a plain text file containing the most promising mutants and a graphical representation of all interactions. We applied our tool on two experimentally validated influenza A virus and hepatitis C virus interactions and we were able to predict potential double mutants for in vitro validation experiments. The source code and documentation of SIM are freely available at github.com/desiro/silentMutations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}