## $-Supplementary\ Data-$

## Differential transcriptional responses to Ebola and Marburg virus infection in cells from bats and humans

Martin Hölzer<sup>1,+</sup>, Verena Krähling<sup>2,+</sup>, Fabian Amman<sup>3</sup>, Emanuel Barth<sup>1,27</sup>, Stephan H Bernhart<sup>4</sup>, Victor AO Carmelo<sup>5,6</sup>, Maximilian Collatz<sup>1,2</sup>, Gero Doose<sup>4</sup>, Florian Eggenhofer<sup>7</sup>, Jan Ewald<sup>8</sup>, Jörg Fallmann<sup>7</sup>, Lasse M Feldhahn<sup>9,10,11</sup>, Markus Fricke<sup>1</sup>, Juliane Gebauer<sup>8</sup>, Andreas J Gruber<sup>12</sup>, Franziska Hufsky<sup>1,13</sup>, Henrike Indrischek<sup>14</sup>, Sabina Kanton<sup>15,16</sup>, Jörg Linde<sup>17</sup>, Nelly Mostajo B.<sup>1,2</sup>, Roman Ochsenreiter<sup>7</sup>, Konstantin Riege<sup>1</sup>, Lorena Rivarola-Duarte<sup>3,18,19</sup>, Abdullah H Sahyoun<sup>1,3,20</sup>, Sita J Saunders<sup>21</sup>, Stefan E Seemann<sup>5,6</sup>, Andrea Tanzer<sup>7</sup>, Bertram Vogel<sup>1,2,13</sup>, Stefanie Wehner<sup>1,22</sup>, Michael T Wolfinger<sup>7,23,24</sup>, Rolf Backofen<sup>5,21,25</sup>, Jan Gorodkin<sup>5,6</sup>, Ivo Grosse<sup>9,10</sup>, Ivo Hofacker<sup>5,7</sup>, Steve Hoffmann<sup>4</sup>, Cristoph Kaleta<sup>8,26</sup>, Peter F Stadler<sup>3,5</sup>, Stephan Becker<sup>2</sup>, and Manja Marz<sup>1,27,\*</sup>

```
<sup>1</sup>RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena,
Leutragraben 1, 07743, Jena, Germany
```

<sup>2</sup>Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
<sup>3</sup>Bioinformatics Group, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
<sup>4</sup>Transcriptome Bioinformatics, Junior Research Group, Leipzig Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany

<sup>5</sup>Center for Non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark <sup>6</sup>Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark <sup>7</sup>Theoretical Biochemistry Group, Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria <sup>8</sup>Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany <sup>9</sup>German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany <sup>10</sup>Institute of Computer Science, Martin-Luther University, Von-Seckendorff-Platz 1, 06120, Halle/Saale, Germany

<sup>11</sup>Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
<sup>12</sup>Biozentrum, University of Basel, Klingelbergstraße 50/70, CH-4056, Basel, Switzerland

<sup>13</sup>Chair of Bioinformatics, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany

<sup>14</sup>Junior Professorship for Computational EvoDevo, Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany

<sup>15</sup>TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany

<sup>16</sup>Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 54, 04109, Leipzig, Germany
<sup>17</sup>Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI), RG Systems Biology and Bioinformatics, Beutenbergstraße 11a, 07745, Jena, Germany
<sup>18</sup>Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

<sup>19</sup>Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
 <sup>20</sup>Doctoral School of Science and Technology, AZM Center for Biotechnology Research, Lebanese University, Tripoli, Lebanon
 <sup>21</sup>Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
 <sup>22</sup>Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, U.K

<sup>23</sup>Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria

<sup>24</sup>Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria

<sup>25</sup>Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
<sup>26</sup>Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Brunswiker Str. 10,

24105, Kiel, Germany <sup>27</sup>FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany \*Tel: +49 3641 946480; Email: manja@uni-jena.de

 $^{+}$  these authors contributed equally to this work

Supplementary Table 1: **Read statistics.** Read counts and assembly/mapping statistics for all 18 HiSeq samples and the additional MiSeq library for R. aegyptiacus. We mapped all corresponding samples to the H. sapiens and R. aegyptiacus genome with TopHat and segemehl. Additionally, we build de novo transcriptome assemblies for both species. For R. aegyptiacus, a de novo transcriptome assembly was computed based on the HiSeq and pooled MiSeq reads. MiSeq data was assembled with Mira only. For each assembly tool, the number of contigs (>=0 bp, >=1000 bp) and the N50 value are listed. For TopHat and segemehl, overall read mapping statistics are provided. A large amount of reads in the EBOV 23 h sample mapped to the EBOV genome. Detailed statistics can be found in the electronic supplement.

| Cell line |                        |                 |                  | HuH'   | 7 (Hon          | no sap           | iens)  |                 |              | R06E-J (Rousettus aegyptiacus) |                 |                  |       |               |                  |      |               |                  |
|-----------|------------------------|-----------------|------------------|--------|-----------------|------------------|--------|-----------------|--------------|--------------------------------|-----------------|------------------|-------|---------------|------------------|------|---------------|------------------|
| Samples   |                        | Mock            |                  |        | EBOV            |                  |        | MA              | RV           |                                | Mock            |                  | EBOV  |               |                  | MARV |               | V                |
|           | 3 h                    | $7  \mathrm{h}$ | $23  \mathrm{h}$ | 3 h    | $7  \mathrm{h}$ | $23  \mathrm{h}$ | 3 h    | $7  \mathrm{h}$ | 23 h         | 3 h                            | $7  \mathrm{h}$ | $23  \mathrm{h}$ | 3 h   | $7\mathrm{h}$ | $23  \mathrm{h}$ | 3 h  | $7\mathrm{h}$ | $23  \mathrm{h}$ |
|           | Read data (million rea |                 |                  |        |                 |                  |        |                 |              |                                |                 |                  |       |               |                  |      |               |                  |
| raw       | 40.5                   | 38.0            | 39.0             | 34.4   | 49.9            | 53.0             | 44.2   | 48.4            | 36.3         | 50.4                           | 44.0            | 48.5             | 41.5  | 38.4          | 39.3             | 37.5 | 48.7          | 45.6             |
| processed | 38.4                   | 36.0            | 36.9             | 32.8   | 46.6            | 50.1             | 41.8   | 45.7            | 34.3         | 47.8                           | 41.4            | 45.5             | 39.4  | 36.0          | 37.4             | 35.5 | 45.9          | 43.3             |
|           | Mapp                   | oing or         | ı huma           | n geno | ome (o          | verall 1         | read m | apping          | g rate in %) | Map                            | ping or         | ı bat g          | enome | (overa        | all reac         | mapp | oing ra       | te in %)         |
| TopHat    | 89.4                   | 90.8            | 91.3             | 89.9   | 88.9            | 55.7             | 90.6   | 89.3            | 88.9         | 90.6                           | 90.7            | 92.2             | 90.2  | 91.0          | 72.4             | 91.3 | 91.1          | 89.1             |
| segemehl  | 95.3                   | 95.6            | 95.1             | 95.1   | 93.1            | 58.3             | 95.4   | 94.5            | 92.8         | 97.5                           | 92.0            | 97.2             | 97.2  | 96.7          | 76.9             | 97.3 | 96.9          | 95.4             |

|            |      |                 | D D              | 7 / 5  |                 |                  |              |                          |                  |         |  |  |
|------------|------|-----------------|------------------|--------|-----------------|------------------|--------------|--------------------------|------------------|---------|--|--|
| Cell line  |      |                 | R06E-            | J (Rou | settus          | aegyp            | $tiacus_{,}$ | )                        |                  |         |  |  |
| Samples    |      | Mock            |                  |        | EBOV            |                  |              | MARV                     | ,                | pooled  |  |  |
|            | 3 h  | $7  \mathrm{h}$ | $23  \mathrm{h}$ | 3 h    | $7  \mathrm{h}$ | $23  \mathrm{h}$ | 3 h          | $7  \mathrm{h}$          | $23  \mathrm{h}$ | MiSeq   |  |  |
|            |      |                 | Rea              | ad dat | a (mill         | ion rea          | ids)         |                          |                  |         |  |  |
| raw        | 50.4 | 44.0            | 48.5             | 41.5   | 38.4            | 39.3             | 37.5         | 48.7                     | 45.6             | 38.2    |  |  |
| processed  | 47.8 | 41.4            | 45.5             | 39.4   | 36.0            | 37.4             | 35.5         | 45.9                     | 43.3             | 38.0    |  |  |
|            |      |                 | de nov           | o tran | scripte         | ome as           | sembly       | 7                        |                  |         |  |  |
|            | _    |                 |                  |        |                 | ~                |              |                          |                  |         |  |  |
|            |      |                 | $>= 0 b_1$       | р      | >=              | = 1000           | bp           | N50                      |                  |         |  |  |
| Oases      |      |                 | 370 200          | )      | 180458          |                  |              |                          | 3 875            |         |  |  |
| TransABySS |      | ,               | 790 204          | 1      | 169324          |                  |              |                          | 1                | . 788   |  |  |
| SOAP-Trans |      | (               | 699 418          | 3      | 147144          |                  |              |                          | 3                | 3 2 6 1 |  |  |
| Trinity    |      |                 | 484 826          | 3      |                 | 188 534          | 1            |                          | 5                | 071     |  |  |
| Mira       |      |                 | 162 861          | L      |                 | 21987            |              |                          |                  | 774     |  |  |
|            | _    |                 |                  |        |                 |                  |              |                          |                  |         |  |  |
| Combined   |      | g               | 77 78            | 7      | 2               | 277 Š9           | 5            |                          | 3 923            |         |  |  |
|            |      | Mapp            | oing or          | bat t  | ranscri         | ptome            | (overa       | all read mapping rate in |                  |         |  |  |
| TopHat     | 94.6 | 94.7            | 95.2             | 94.6   | 95.0            | 95.8             | 95.5         | 95.2                     | 94.8             | _       |  |  |
| segemehl   | 98.5 | 97.0            | 97.6             | 98.5   | 96.6            | 98.4             | 98.2         | 97.6                     | 97.4             | _       |  |  |
|            |      |                 |                  |        |                 |                  |              |                          |                  |         |  |  |

Supplementary Table 2: **Number of reads mapping to the viral genomes.** For R06E-J samples, we used Blastn+ to find contigs within the *R. aegyptiacus* transcriptome assembly which represent the full EBOV (contig610) and MARV (contig5818) genome, respectively. Read counts were normalized by library size. Read maximum peaks were calculated for each sample. Interestingly, EBOV seems to replicate much faster in human cells compared to bat cells between 3 and 7 h (15.6X). However, EBOV decreases its transcription speed again in the following 16 h (15.5X) (see Fig. 1B and Fig. 3 in the manuscript). Similarly, MARV replicates faster between 3 and 7 h in human cells (7.6X) than bat cells (4.3X). The RNA profiles mapping to the viral genomes are astonishingly similar, showing no mutations and only a minor fraction of reads mapping to the 5' and 3' UTR of the genome, showing the difference between genomic and transcriptomic level. Read counts are based on unique TopHat mappings.

| -                    |            |         |           |         |         |          |           |           |           |              |       |          |  |
|----------------------|------------|---------|-----------|---------|---------|----------|-----------|-----------|-----------|--------------|-------|----------|--|
|                      | Н          | uH7 EBC | )V        | Н       | uH7 MA  | RV       | R         | 06E-J EB  | SOV       | R06E-J MARV  |       |          |  |
|                      | (K         | M034562 | v1)       | (       | JN40806 | 64)      |           | (contig61 | 0)        | (contig5818) |       |          |  |
|                      | # reads    | peak    | norm.     | # reads | peak    | norm.    | # reads   | peak      | norm.     | # reads      | peak  | norm.    |  |
| Mock 3 h             | 3 689      | 182     | 96.07     | 134     | 9       | 3.49     | 3 9 5 6   | 124       | 82.76     | 158          | 11    | 3.31     |  |
| Mock 7 h             | 1897       | 102     | 52.69     | 104     | 8       | 2.89     | 4 722     | 151       | 119.85    | 155          | 13    | 3.74     |  |
| Mock 23 h            | 3 469      | 148     | 94.01     | 128     | 6       | 3.47     | 4 868     | 164       | 106.99    | 289          | 10    | 6.35     |  |
| EBOV 3 h             | 28 009     | 1653    | 853.93    |         |         |          | 39 274    | 1156      | 948.65    |              |       |          |  |
| EBOV 7 h             | 619 370    | 43222   | 13291.20  |         |         |          | 162 618   | 7260      | 4517.17   |              |       |          |  |
| EBOV $23 \mathrm{h}$ | 10 334 085 | 429012  | 206269.16 |         |         |          | 6 853 608 | 228449    | 183251.55 |              |       |          |  |
| MARV 3 h             |            |         |           | 37 504  | 1794    | 897.22   |           |           |           | 3 896        | 126   | 109.75   |  |
| MARV 7h              |            |         |           | 313 238 | 13683   | 6854.22  |           |           |           | 21 654       | 782   | 471.76   |  |
| MARV~23h             |            |         |           | 701 757 | 24435   | 20459.39 |           |           |           | 848 647      | 22119 | 19599.24 |  |

Supplementary Table 3: Comparison of genome and de novo transcriptome assemblies. From the genomic sequences of H. sapiens and R. aegyptiacus we selected different sets of expressed genes using various filter thresholds: 1) we selected transcripts from the genome with at least  $N \in \{100, 1000, 5000\}$  unique mapped reads in one sample  $(= \exists)$  or 2) accumulated all unquie mapped reads over all samples  $(= \sum \forall)$ . The selected transcript sets were further blasted against the corresponding de novo transcriptome assembly of human and bat, respectively. We defined a transcript (derived from the genomic sequence) as true positive and therefore correctly assembled, if we got at least one blast hit with an alignment length > 90%.

|                |            | $\exists$ sample |            | $\sum$ $\forall$ samples |            |             |  |  |  |
|----------------|------------|------------------|------------|--------------------------|------------|-------------|--|--|--|
| read count     | $\geq 100$ | $\ge 1000$       | $\ge 5000$ | $\geq 100$               | $\ge 1000$ | $\geq 5000$ |  |  |  |
| H. sapiens     | 96.54%     | 97.39%           | 98.17%     | 93.0%                    | 97.18%     | 98.08%      |  |  |  |
| R. aegyptiacus | 88.26%     | 92.8%            | 94.02%     | 81.25%                   | 90.20%     | 92.19%      |  |  |  |

Supplementary Table 4: **Differential gene expression.** Differential expression levels of NCBI-annotated protein-coding genes and ncRNAs, de novo Cufflinks-predicted genes, and hand-selected genes of interest from the literature. From the 2364 de novo gene loci showing differential expression, 92% could be mapped back to already annotated genes (hg19 annotations). Thus, we detected 189 (8%) unannotated gene loci with significant differential expression. DEG – differential expressed genes ((padj) < 0.1); FC – mean fold change of differential expressed genes (top 300 and all) calculated with DESeq (padj < 0.1); for each gene the maximum fold change obtained over all combinations of time points and infections was used.

|                                                          | genes of interest    | Total      |            |             |        |  |  |  |  |  |  |  |
|----------------------------------------------------------|----------------------|------------|------------|-------------|--------|--|--|--|--|--|--|--|
|                                                          |                      | HuH7 san   | nples      |             |        |  |  |  |  |  |  |  |
| # genes                                                  | 25051                | 2 349      | 18 391     | 1 508       | 47299  |  |  |  |  |  |  |  |
| # DEG                                                    | 2492                 | 20         | 2364       | 167         | 5043   |  |  |  |  |  |  |  |
| FC Top 300                                               | 4.74                 | 2.69       | 4.58       | 2.53        |        |  |  |  |  |  |  |  |
| standard deviation                                       | $\pm 0.84$           | $\pm 1.02$ | $\pm 0.91$ | $\pm 1.09$  |        |  |  |  |  |  |  |  |
| FC total                                                 | 2.53                 | 2.69       | 2.35       | 2.53        |        |  |  |  |  |  |  |  |
| standard deviation $\pm 1.03 \pm 1.02 \pm 1.04 \pm 1.09$ |                      |            |            |             |        |  |  |  |  |  |  |  |
|                                                          | ]                    | R06E-J sa  | mples      |             |        |  |  |  |  |  |  |  |
| # genes                                                  | 11 358               | 499        | 10496      | 915         | 23 268 |  |  |  |  |  |  |  |
| # DEG                                                    | 641                  | 8          | 368        | 58          | 1075   |  |  |  |  |  |  |  |
| FC Top 300                                               | 2.28                 | 3.13       | 5.61       | 1.64        |        |  |  |  |  |  |  |  |
| standard deviation                                       | $\pm 0.69$           | 1.46       | $\pm 2.14$ | $\pm  0.64$ |        |  |  |  |  |  |  |  |
| FC total                                                 | 1.77                 | 3.13       | 5.04       | 1.64        |        |  |  |  |  |  |  |  |
| standard deviation $\pm 0.68$ 1.46 $\pm 2.29$ $\pm 0.64$ |                      |            |            |             |        |  |  |  |  |  |  |  |
|                                                          | Manually inspected   |            |            |             |        |  |  |  |  |  |  |  |
|                                                          | 400 117 170 793 1480 |            |            |             |        |  |  |  |  |  |  |  |

Supplementary Table 5: **Top 10 keyplayers of human and bat infection.** Comparison between all conditions and time points within one species. The read\_max values are based on multiple mapped reads and candidates listed here are filtered based on a read\_max of at least 100 reads in one sample. Fold changes for human samples are based on unique mapped reads. Interestingly, genes coding for histones are up-regulated between 7 h and 23 h in all samples including Mock.

HIST2H4B – in Mock and EBOV highly regulated, probably cell induced, independent from infection; CENPE – the other samples are fairly constant at around 500 read\_max; superscript sized numbers – among top 10 of following list (sorted by read\_max), number of rank;  $FC - log_2$  fold change based on DESeq normalized read counts; norm\_reads – DESeq normalized read counts; change\_max – divided read\_max values; read\_max – maximum number of reads mapping to one nucleotide position of this gene; Mo – Mock; EV – EBOV; MV – MARV; Genes specified by a number refer to the corresponding LOC, for example LOC338651. Further details about differential expression can be obtained from the various tables and pathway figures in the electronic supplement.

|             | Gene                          | Samples                                | FC     | norm.        | reads       | change_max  | read_max |      |
|-------------|-------------------------------|----------------------------------------|--------|--------------|-------------|-------------|----------|------|
|             | EBO                           | V and MARV                             | on hum | an cells (se | orted by fo | old change) |          |      |
| A1          | PZP                           | EV 3 h/23 h                            | 8.38   | 6.84         | 2283.13     | 2.8660      | 664      | 1903 |
| A2          | $FOSB^{B8}$                   | EV 7 h/23 h                            | 6.89   | 20.32        | 2416.03     | 63.25       | 4        | 253  |
| A3          | RPS17                         | Mo 3 h/23 h                            | -6.85  | 343.00       | 2.98        | -2.0222     | 1727     | 854  |
| A4          | $FOS^{B3}$                    | EV 7 h/23 h                            | 6.09   | 36.82        | 2190.53     | 63.8333     | 6        | 383  |
| A5          | AREG                          | EV 7 h/23 h                            | 6.01   | 1.63         | 105.27      | 20.3333     | 27       | 549  |
| A6          | $ATF3^{B1}$                   | EV 3 h/23 h                            | 5.89   | 176.81       | 10457.63    | 73.7368     | 19       | 1401 |
| A7          | $338651^{B4}$                 | EV 3 h/23 h                            | 5.85   | 10.27        | 590.85      | 24.5600     | 25       | 614  |
|             | $read_max$                    | EV 7 h/23 h                            | 5.80   | 10.57        | 590.85      | 34.1111     | 18       | 614  |
| A8          | TMEM88                        | EV 7 h/23 h                            | 5.74   | 1.63         | 86.85       | 8.6145      | 83       | 715  |
| A9          | MYCN                          | EV 7 h/23 h                            | -5.69  | 3530.65      | 68.43       | -21.2500    | 340      | 16   |
| A10         | GZMM                          | EV 3 h/23 h                            | 5.67   | 2.28         | 104.42      | 2.28369     | 141      | 323  |
|             | EBC                           | OV and MARV                            | on hur | nan cells (  | sorted by 1 | read_max)   |          |      |
| B2          | PPP1R15A                      | EV 3 h/23 h                            | 5.37   | 496.95       | 18529.31    | 53.1282     | 39       | 2072 |
| B5          | EGR1                          | EV 3 h/23 h                            | 4.91   | 136.88       | 4110.94     | 31.6154     | 13       | 411  |
| $_{\rm B6}$ | NR4A1                         | EV 3 h/23 h                            | 4.44   | 227.96       | 4466.49     | 28.1538     | 13       | 366  |
| B7          | DUSP1                         | EV 7 h/23 h                            | 4.57   | 364.87       | 7569.54     | 25.3051     | 59       | 1493 |
| B9          | DUSP8                         | EV 7 h/23 h                            | 5.01   | 281.28       | 9032.49     | 24.0769     | 26       | 626  |
| B10         | NFKB2                         | EV 3 h/23 h                            | 4.08   | 443.38       | 6769.7      | 23.0000     | 32       | 736  |
|             |                               | OV and MARV                            | on ba  | t cells (sor | ted by fold | l change)   |          |      |
| C1          | $TRIB3^{D2}$                  | MV 3 h-23 h                            | 4.76   | 8.90         | 240.54      | 14.0000     | 3        | 42   |
| C2          | $CHAC1^{D1}$                  | MV $3\mathrm{h}\text{-}23\mathrm{h}$   | 3.70   | 61.18        | 796.86      | 21.9286     | 14       | 307  |
| C3          | $DDIT4^{D3}$                  | Mo $7\mathrm{h}\text{-}23\mathrm{h}$   | 3.66   | 47.74        | 609.84      | 11.4444     | 9        | 103  |
| C4          | HIST1H4A                      | Mo $7\mathrm{h}\text{-}23\mathrm{h}$   | 3.06   | 40.85        | 339.59      | 5.4815      | 27       | 148  |
| C5          | $CDH6^{D6}$                   | EV $3 \mathrm{h}\text{-}23 \mathrm{h}$ | -2.97  | 4279.83      | 546.64      | -6.8868     | 365      | 53   |
| C6          | $SQSTM1^{D4}$                 | EV $7 \mathrm{h}\text{-}23 \mathrm{h}$ | 2.92   | 716.19       | 5435.56     | 9.4000      | 80       | 752  |
| C7          | ATF3                          | Mo $3\mathrm{h}\text{-}23\mathrm{h}$   | 2.89   | 28.56        | 211.33      | 5.1111      | 46       | 9    |
|             | $\operatorname{read\_max}$    | EV $3 \mathrm{h}\text{-}23 \mathrm{h}$ | 2.37   | 99.81        | 515.84      | 5.0800      | 25       | 127  |
| C8          | $HIST2H4B^{D7}$               | Mo $7\mathrm{h}\text{-}23\mathrm{h}$   | 2.83   | 49.02        | 349.36      | 4.7097      | 31       | 146  |
|             | $\operatorname{read}_{-}\max$ | EV $3\mathrm{h}\text{-}7\mathrm{h}$    | 2.40   | 20.14        | 106.22      | 6.5556      | 9        | 59   |
| C9          | CYP1B1                        | MV $3 \mathrm{h}\text{-}23 \mathrm{h}$ | -2.76  | 1239.22      | 182.81      | -3.8857     | 136      | 35   |
| C10         | $DUSP5^{D8}$                  | MV $3\mathrm{h}\text{-}23\mathrm{h}$   | 2.74   | 188.00       | 1252.58     | 6.2069      | 29       | 180  |
|             | EE                            | BOV and MAR                            | V on b | at cells (so | rted by rea | ad_max)     | •        | •    |
| D5          | PLEKHA4                       | EV 7 h-23 h                            | 1.58   | 76.66        | 228.41      | 8.8461      | 13       | 115  |
| D9          | MICAL1                        | MV $3\mathrm{h}\text{-}23\mathrm{h}$   | 1.74   | 254.74       | 852.84      | 5.8824      | 17       | 100  |
| D10         | CENPE                         | Mo $3\mathrm{h}\text{-}23\mathrm{h}$   | -1.96  | 30412.24     | 7837.38     | -5.8202     | 1036     | 178  |

Supplementary Table 6: **Top 10 differences between EBOV/Mock, MARV/Mock and EBOV/MARV in human cells.** Genes with highest differential expression between Mock samples and EBOV- and MARV-infected samples, respectively. In addition, genes with the highest differential expression between EBOV- and MARV-infected samples are summarized. By manual inspection, we found CXCL8, AKR1B10 and AKR1B15 to play rather a minor role, since we determined only low level transcription and mapping artifacts (AKR1B10 and AKR1B15 are located next to each other, reads were mapped twice). AMOTL2 is part of the MAPK signalling pathway (see electronic supplement). LOC100507347 refers to a protein with unknown function (also described as BC078172). Abbreviations as in STab. 5.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Gene            | Samples        | FC      | norm                                    | reads      | change_max | read | _max |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|----------------|---------|-----------------------------------------|------------|------------|------|------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Λ               |                | OV infe | ection (sort                            | ed by fold | change)    |      |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E1  | $ANKRD1^{F1}$   | 23 h           | 7.41    | 55.60                                   | 9427.27    | 111.33300  | 15   | 1670 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E2  | RPS17           | $23\mathrm{h}$ | 6.86    | 2.98                                    | 346.09     | 2.28923    | 854  | 1955 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E3  | FOSB            | $23\mathrm{h}$ | 6.73    | 22.83                                   | 2416.03    | 63.25      | 4    | 253  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E4  | PZP             | $3\mathrm{h}$  | -6.45   | 598.72                                  | 6.84       | 0.71084    | 472  | 664  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E5  | CXCL8           | $23\mathrm{h}$ | 6.40    | 10.38                                   | 754.70     | 57.0       | 3    | 171  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E6  |                 | $23\mathrm{h}$ | -6.17   | 4917.46                                 | 68.43      | 0.04290    | 373  | 16   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E7  |                 | $23\mathrm{h}$ | 6.05    | 8.94                                    | 590.85     | 55.8182    | 11   | 614  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E8  | $AREG^{F6}$     | $23\mathrm{h}$ | 5.80    | 1.99                                    | 110.54     | 39.2000    | 10   | 392  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E9  | $PPP1R15A^{F3}$ | $^{3}$ 23 h    | 5.70    | 414.04                                  | 18529.31   | 51.8000    | 40   | 2072 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E10 | FOS             | $23\mathrm{h}$ | 5.58    | 52.92                                   | 2190.53    | 25.5333    | 15   | 383  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 | Mock vs. El    | 30V in  |                                         | ted by rea | d_max)     |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | DUSP8           |                | 5.34    | 222.39                                  | 9032.49    | 48.1538    | 13   | 626  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F5  | CXCL5           | $23\mathrm{h}$ | 5.24    | 83.40                                   | 3158.21    | 40.6000    | 10   | 406  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F7  | DUSP1           | $23\mathrm{h}$ | 5.34    | 216.88                                  | 7569.54    | 37.3250    | 40   | 1493 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F8  | AREG            | $23\mathrm{h}$ | 0.00    | 0.00                                    | 105.27     | 34.3125    | 16   | 549  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | AMOTL2          |                | 4.68    |                                         |            |            | 41   | 1366 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                 |                |         |                                         |            |            | 10   |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 | Mock vs        |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G1  | $AKR1B10^{H1}$  |                |         | 34.75                                   | 3050.01    | 65.5714    | 7    | 459  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G2  |                 | $23\mathrm{h}$ | 6.05    | 2.98                                    | 196.81     | 1.2424     | 854  | 106  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         | l          |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                 |                |         |                                         |            |            |      |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $\begin{array}{ c c c c c c c c c c }\hline H8 & GPX2 & 23 & h & 3.13 & 124.10 & 1089.52 & 6.9118 & 34 & 235 \\ H9 & ANKRD1 & 23 & h & 3.79 & 55.60 & 770.93 & 6.3333 & 15 & 95 \\ H10 & PTGR1 & 23 & h & 2.66 & 1551.78 & 9778.51 & 4.7797 & 177 & 846 \\\hline & & EBOV vs. & MARV & infection & (sorted by fold change)\\\hline I1 & PZP & 3 & h & 7.36 & 6.84 & 1124.58 & 1.4142 & 664 & 939 \\ I2 & AKR1B10^{J2} & 23 & h & 7.18 & 21.05 & 3050.01 & 28.6875 & 16 & 459 \\ I3 & FOSB^{J4} & 23 & h & -6.53 & 2416.03 & 26.10 & -62.25 & 253 & 4 \\ I4 & CXXC1^{J5} & 23 & h & 6.12 & 32.90 & 2282.34 & 24.9375 & 16 & 399 \\ I5 & AREG & 23 & h & -5.60 & 105.27 & 2.17 & -11.9348 & 549 & 46 \\ I6 & GZMM & 23 & h & -5.26 & 82.90 & 2.17 & -2.4030 & 322 & 134 \\ I7 & FOS^{J3} & 23 & h & -5.13 & 2190.53 & 67.99 & -27.3571 & 383 & 14 \\ I8 & GPX2 & 23 & h & 5.11 & 31.58 & 1089.52 & 12.3684 & 19 & 235 \\ I9 & F2RL2 & 23 & h & 4.90 & 143.44 & 4288.50 & 12.2500 & 16 & 196 \\ I10 & PPP1R15A & 23 & h & -4.80 & 18529.31 & 719.21 & -30.9254 & 2072 & 67 \\ \hline & EBOV vs. & MARV & infection & (sorted by read\_max) \\ J1 & PPP1R15A & 23 & h & -4.80 & 18529.31 & 719.21 & -30.9254 & 2072 & 67 \\ J6 & 338651 & 23 & h & -4.28 & 590.85 & 30.45 & -24.5600 & 614 & 25 \\ J7 & DUSP8 & 23 & h & -4.07 & 9032.49 & 537.15 & -24.0769 & 626 & 26 \\ J8 & ATF3 & 23 & h & -4.31 & 10457.63 & 527.36 & -20.9104 & 1401 & 67 \\ J9 & ANKRD1 & 23 & h & -3.61 & 9427.27 & 770.93 & -17.5789 & 1670 & 95 \\ \hline \end{array}$ |     | CACLO           |                |         |                                         |            |            | 10   | 122  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H8  | GPX2            |                |         | · ` · · · · · · · · · · · · · · · · · · |            |            | 34   | 235  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                 |                |         |                                         |            |            |      |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                 |                |         |                                         |            |            |      |      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            | 111  | 010  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                 |                |         |                                         |            |            | 664  | 939  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                 |                |         |                                         | l          |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         | l          |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                 |                |         |                                         |            |            | 2072 | 67   |
| J6     338651     23 h     -4.28     590.85     30.45     -24.5600     614     25       J7     DUSP8     23 h     -4.07     9032.49     537.15     -24.0769     626     26       J8     ATF3     23 h     -4.31     10457.63     527.36     -20.9104     1401     67       J9     ANKRD1     23 h     -3.61     9427.27     770.93     -17.5789     1670     95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                 |                |         | ` `                                     |            |            | 00=0 |      |
| J7     DUSP8     23 h     -4.07     9032.49     537.15     -24.0769     626     26       J8     ATF3     23 h     -4.31     10457.63     527.36     -20.9104     1401     67       J9     ANKRD1     23 h     -3.61     9427.27     770.93     -17.5789     1670     95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                 |                |         |                                         | l          |            |      |      |
| J8     ATF3     23 h     -4.31     10457.63     527.36     -20.9104     1401     67       J9     ANKRD1     23 h     -3.61     9427.27     770.93     -17.5789     1670     95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |                |         |                                         |            |            |      |      |
| J9 ANKRD1 23 h   -3.61   9427.27   770.93   -17.5789   1670   95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                 |                |         |                                         |            |            |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                 |                |         |                                         | l          |            |      |      |
| J10 $AREG$ 23 h   -3.50   110.54   9.79   -14.5185   392   27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                 |                |         |                                         |            |            |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J10 | AREG            | 23 h           | -3.50   | 110.54                                  | 9.79       | -14.5185   | 392  | 27   |

Supplementary Table 7: **Top 15 differences between human and bat cells.** To investigate genes that were differentially expressed between human and *Rousettus aegyptiacus* tissues, we compared *R. aegyptiacus* transcripts with the corresponding human genes. *R. aegyptiacus* transcripts were identified by homology to annotated *Pteropus vampyrus* genes. Most of the top 15 differences between human and bat cells after infection with EBOV and MARV are shut down completely in either human or bat cells. No gene, except *RELN*, is part of STab. 5 or STab. 6, indicating, that these genes are not differentially expressed during infection, but rather point out general differences of the cell lines HuH7 and R06E-J. The genes are associated with calcium regulated pathways (*ATP2B4*), acyl-CoA pathways (*ACADSB*), transcription factors (*HNF4A*), adenylatkinase (*AK4*) possibly for nucleotide synthesis, cell cycle (*CCND2*), keratins for fibrous proteins forming structural framework (*KRT5*, *KRT75*), or are involved in actin pathways (*ACTA2*).

FC  $-log_2$  fold change based on DESeq normalized read counts; norm\_reads - DESeq normalized read counts; EV - EBOV; MV - MARV; Mo - Mock. For the complete table, see the electronic supplement.

| Gene    | Samples        | FC       | norm_re        | eads      |  |  |
|---------|----------------|----------|----------------|-----------|--|--|
|         |                |          | Human cells    | Bat cells |  |  |
| Hu      | man vs. B      | at after | EBOV infection | on        |  |  |
| RELN    | 23 h           | -14.63   | 32405.90       | 1.28      |  |  |
| ATP2B4  | $7\mathrm{h}$  | -13.73   | 13614.49       | 0.00      |  |  |
| ACADSB  | $7\mathrm{h}$  | -13.59   | 12305.64       | 0.00      |  |  |
| HNF4A   | $7\mathrm{h}$  | -13.24   | 9692.00        | 0.00      |  |  |
| CCND2   | $23\mathrm{h}$ | 13.18    | 0.00           | 9253.02   |  |  |
| TRIM71  | $7\mathrm{h}$  | -13.07   | 8592.89        | 0.00      |  |  |
| AK4     | $7\mathrm{h}$  | -12.97   | 8049.84        | 0.00      |  |  |
| ACTA2   | $7\mathrm{h}$  | 12.95    | 1.63           | 12899.06  |  |  |
| DAB2    | $23\mathrm{h}$ | -12.65   | 6415.12        | 0.00      |  |  |
| COCH    | $3\mathrm{h}$  | -12.54   | 5956.65        | 0.00      |  |  |
| KRT5    | $23\mathrm{h}$ | 12.52    | 0.00           | 5888.52   |  |  |
| KRT75   | $3\mathrm{h}$  | 12.39    | 0.00           | 5369.48   |  |  |
| BMP2    | $23\mathrm{h}$ | -12.38   | 5336.06        | 0.00      |  |  |
| SULT1C4 | $23\mathrm{h}$ | -12.19   | 4672.84        | 0.00      |  |  |
| CXCL10  | $23\mathrm{h}$ | 12.15    | 0.00           | 4559.14   |  |  |
| Hu      | man vs. B      | at after | MARV infection | on        |  |  |
| ACTA2   | 3 h            | 14.20    | 0.00           | 18826.36  |  |  |
| ATP2B4  | $7\mathrm{h}$  | -13.71   | 13373.93       | 0.00      |  |  |
| HNF4A   | $7\mathrm{h}$  | -13.39   | 10724.09       | 0.00      |  |  |
| CCND2   | $23\mathrm{h}$ | 13.38    | 1.09           | 11619.63  |  |  |
| AK4     | $23\mathrm{h}$ | -13.13   | 8965.17        | 0.00      |  |  |
| RELN    | $23\mathrm{h}$ | -13.12   | 8899.93        | 0.00      |  |  |
| KRT5    | $23\mathrm{h}$ | 13.12    | 0.00           | 8915.03   |  |  |
| KRT75   | $23\mathrm{h}$ | 13.02    | 1.09           | 9033.99   |  |  |
| TRIM71  | $7\mathrm{h}$  | -12.95   | 7886.39        | 0.00      |  |  |
| ACADSB  | $23\mathrm{h}$ | -12.74   | 5964.10        | 0.87      |  |  |
| MAGED1  | $3\mathrm{h}$  | 11.86    | 0.00           | 3719.89   |  |  |
| PTPRZ1  | $3\mathrm{h}$  | 11.82    | 0.00           | 3607.53   |  |  |
| COCH    | $23\mathrm{h}$ | -10.01   | 6290.30        | 6.12      |  |  |
| PDPN    | $7\mathrm{h}$  | 11.02    | 0.00           | 2077.09   |  |  |
| BMP2    | $7\mathrm{h}$  | -11.75   | 3446.80        | 0.00      |  |  |

Supplementary Table 8: Comparison of human and bat cells (EBOV and MARV as replicates) infected with filoviruses (3 h, 23 h). Although we observed various differences in gene expression profiles between EBOV and MARV-infected cells, both infections share the same disease symptoms. To find genes that are differentially expressed between human and bat during filovirus infection, we treated EBOV and MARV samples (from the same time point) as replicates for DESeq analysis ( $padj \leq 0.1$ ). Genes sorted by the maximum fold change of 3 h and 23 h p.i. More than half of the top 30 genes are related to actin, connecting tissues and cell-cell interaction. Since we observed these massive differences also between human-Mock cells and bat-Mock cells, they might origin from the differences between cell lines HuH7 and R06E-J. To overcome this cell line artifact, we remove differentially expressed Mock samples (between human and bat cells, padj < 0.1) and list 30 manually selected genes in STab. 9. Moreover, we used EBOV and MARV samples at same time points as replicates to analyze the impact of filovirus infection compared to Mock in the human cell line (STab. 10).

 $FC - log_2$  fold change based on DESeq normalized read counts; norm\_reads - DESeq normalized read counts; read\_max maximum number of reads mapping to one nucleotide position of this gene; EV - EBOV; MV - MARV. For the complete table, see the electronic supplement.

Genes related to actin, connecting tissues and cell-cell interaction are marked.

|          |                |            | norm     |           | reac | d_max |       |       |                                                  |
|----------|----------------|------------|----------|-----------|------|-------|-------|-------|--------------------------------------------------|
|          |                |            | human    | bat       | hur  | nan   | ba    | at    |                                                  |
| Gene     | Sample         | $FC_{max}$ | EV+MV    | EV+MV     | EV   | MV    | EV    | MV    | Function                                         |
| COL5A1   | 23 h           | 16.39      | 0.42     | 36585.11  | 0    | 2     | 904   | 1288  | connective tissues                               |
| ATP1A3   | $23\mathrm{h}$ | 16.25      | 0.48     | 37903.82  | 1    | 0     | 2524  | 2370  | cation Na <sup>+</sup> /K <sup>+</sup> transport |
| ACTA1    | $23\mathrm{h}$ | 15.82      | 1.45     | 84020.59  | 2    | 0     | 15143 | 18700 | actin, alpha skeletal muscle                     |
| COL6A3   | $23\mathrm{h}$ | 15.26      | 0.42     | 16721.46  | 1    | 1     | 307   | 369   | connective tissues                               |
| EEF1A2   | $3\mathrm{h}$  | 15.15      | 6.1      | 221259.05 | 2    | 3     | 31523 | 30185 | Elongation factor 1-alpha 2                      |
| CCND2    | $23\mathrm{h}$ | 14.96      | 0.42     | 13558.56  | 0    | 1     | 1790  | 2633  | cell cyclus                                      |
| MYO10    | $3\mathrm{h}$  | 14.45      | 0.34     | 7571.73   | 24   | 37    | 285   | 178   | actin-based, filopodia                           |
| RELN     | $23\mathrm{h}$ | -14.19     | 15418.01 | 0.82      | 502  | 234   | 1     | 0     | cell-cell interaction                            |
| ACADL    | $3\mathrm{h}$  | 13.91      | 0.34     | 5231.1    | 0    | 1     | 567   | 492   | Acyl CoA                                         |
| PTK7     | $23\mathrm{h}$ | 13.7       | 1.33     | 17812.49  | 1    | 1     | 694   | 930   | tyrosin protein kinase                           |
| COL4A2   | $3\mathrm{h}$  | 13.7       | 0.34     | 4529.52   | 0    | 1     | 156   | 108   | connective tissues                               |
| GPM6A    | $23\mathrm{h}$ | 13.4       | 0.42     | 4589.59   | 1    | 2     | 877   | 942   | membrane glycoprotein                            |
| KRT75    | $23\mathrm{h}$ | 13.39      | 0.91     | 9771.54   | 12   | 9     | 904   | 1621  | extracellular matrix                             |
| MAP3K13  | $23\mathrm{h}$ | -13.32     | 11719.28 | 1.15      | 2743 | 2328  | 1     | 2     | serine/threonine kinase                          |
| ACTA2    | $3\mathrm{h}$  | 13.22      | 2.64     | 25179.38  | 10   | 12    | 2882  | 3400  | actin, alpha smooth muscle                       |
| RASA3    | $3\mathrm{h}$  | 13.22      | 0.44     | 4196.36   | 2    | 0     | 303   | 202   | GTPase activating                                |
| ACTG2    | $23\mathrm{h}$ | 13.13      | 1.27     | 11391.44  | 0    | 2     | 1112  | 1901  | actin, cytoskeleton                              |
| KIT      | $23\mathrm{h}$ | 13.12      | 0.48     | 4306.14   | 1    | 0     | 214   | 221   | cytokin receptor                                 |
| PXDN     | $23\mathrm{h}$ | 13.11      | 0.97     | 8596.75   | 5    | 2     | 320   | 625   | peroxidasin homolog                              |
| ADAM12   | 3 h            | 13.11      | 0.88     | 7802.54   | 3    | 7     | 395   | 396   | cell-cell ineraction                             |
| SPG20    | $23\mathrm{h}$ | 13.06      | 0.42     | 3621.9    | 1    | 1     | 230   | 265   | microtubulin, GTP                                |
| CACNA2D1 | $3\mathrm{h}$  | 13.0       | 0.44     | 3615.05   | 9    | 6     | 191   | 184   | Ca <sup>2+</sup> channel complex                 |
| LOXL1    | $3\mathrm{h}$  | 12.9       | 0.88     | 6733.85   | 2    | 0     | 529   | 464   | connective tissues                               |
| HTR1D    | $3\mathrm{h}$  | 12.89      | 0.44     | 3351.02   | 1    | 0     | 322   | 496   | serotonin rexeptor                               |
| PTPN13   | 3 h            | 12.88      | 2.0      | 15025.71  | 10   | 12    | 418   | 312   | cytoskeleton, GTPase                             |
| SLC26A5  | $3\mathrm{h}$  | -12.77     | 4089.95  | 0.59      | 1085 | 1480  | 1     | 1     | prestin, motor protein                           |
| IQGAP2   | $3\mathrm{h}$  | -12.72     | 7910.54  | 1.17      | 440  | 500   | 2     | 1     | Ras-GTPase                                       |
| COL1A1   | $3\mathrm{h}$  | 12.72      | 14.31    | 96443.9   | 4    | 4     | 3277  | 1784  | connective tissues                               |
| TMEM47   | $3\mathrm{h}$  | 12.72      | 0.34     | 2285.25   | 0    | 1     | 377   | 529   | transmembrane protein                            |
| KCNA4    | $3\mathrm{h}$  | 12.69      | 1.02     | 6731.18   | 1    | 2     | 333   | 251   | hexokinase                                       |

Supplementary Table 9: Comparison of human and bat samples (EBOV and MARV as replicates) with filovirus infected samples (3 h, 23 h). To find genes that are differentially expressed between human and bat during filovirus infection, we treated EBOV and MARV samples (from the same time point) as replicates for DESeq analysis ( $padj \leq 0.1$ ). We reduced the influence of the different cell types by removing all genes from the initial list (STab. 8) which were also detected as significantly differentially expressed between Mock samples ( $Mock_{3h,7h,23h}$  used as replicates for human and bat samples, respectively). Examples in this list are manually selected from both lists. Genes sorted by the maximum fold change of 3 h and 23 h p.i..

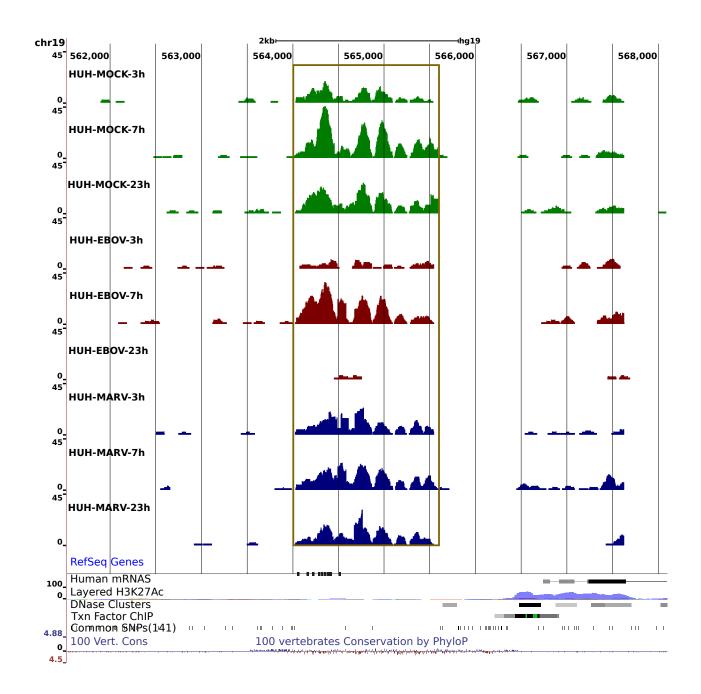
Rk – Rank/position in the corresponding sample list. Abbreviations as in STab. 8. For the complete table, see the electronic supplement.

|            |                |    |            | norm    | reads   | read_max |      |     |     |                                                 |
|------------|----------------|----|------------|---------|---------|----------|------|-----|-----|-------------------------------------------------|
|            |                |    |            | human   | bat     | hun      | nan  | b   | at  |                                                 |
| Gene       | Sample         | Rk | $FC_{max}$ | EV+MV   | EV+MV   | EV       | MV   | EV  | MV  | Function                                        |
| ALPK3      | 23 h           | 1  | -5.94      | 3121.47 | 50.99   | 177      | 58   | 11  | 5   | kinase, adenovirus related                      |
| ARHGAP20   | $23\mathrm{h}$ | 2  | 5.82       | 0.85    | 48.12   | 16       | 12   | 15  | 8   | GTPase activated protein                        |
| SCN4A      | $23\mathrm{h}$ | 3  | 5.17       | 1.7     | 61.25   | 2        | 2    | 10  | 14  | sodium channel                                  |
| TCTEX1D4   | $3\mathrm{h}$  | 1  | 4.94       | 0.44    | 13.51   | 10       | 2    | 4   | 5   | connecting phosphatase                          |
| OSGIN1     | $3\mathrm{h}$  | 2  | -4.47      | 513.5   | 23.1    | 58       | 176  | 12  | 44  | oxidative stress, inhibits growth               |
| SLC12A3    | $23\mathrm{h}$ | 4  | 4.3        | 14.62   | 287.7   | 71       | 145  | 20  | 40  | sodium chlorid carrier                          |
| SLC16A11   | $23\mathrm{h}$ | 5  | 4.29       | 1.39    | 27.19   | 3        | 2    | 6   | 6   | carrier monocarboxylate                         |
| CCDC78     | $23\mathrm{h}$ | 6  | -4.23      | 30.8    | 1.65    | 6        | 3    | 1   | 2   | unknown function                                |
| IGSF6      | $23\mathrm{h}$ | 7  | -4.22      | 30.75   | 1.65    | 5        | 5    | 3   | 2   | immunoglobulin, inflammatory                    |
| UNC13A     | $23\mathrm{h}$ | 8  | 4.17       | 0.97    | 17.41   | 7        | 9    | 11  | 8   | vesicle, exocytose                              |
| NEIL1      | $23\mathrm{h}$ | 9  | -3.9       | 42.93   | 2.87    | 6        | 5    | 5   | 4   | endonuclease, modulated by virus                |
| METRN      | $3\mathrm{h}$  | 4  | -3.85      | 31.13   | 2.16    | 11       | 11   | 4   | 14  | cell differentiation                            |
| ELN        | $23\mathrm{h}$ | 10 | 3.79       | 0.97    | 13.37   | 3        | 2    | 4   | 6   | elastin, cell-cell                              |
| SLC40A1    | $23\mathrm{h}$ | 11 | -3.78      | 6409.48 | 465.85  | 755      | 1770 | 59  | 82  | carrier, iron                                   |
| C11 or f52 | $23\mathrm{h}$ | 12 | -3.73      | 22.87   | 1.72    | 10       | 10   | 1   | 3   | together with HSP transcribed                   |
| SLC10A1    | $23\mathrm{h}$ | 13 | -3.73      | 26.07   | 1.97    | 5        | 3    | 5   | 4   | carrier, NA <sup>2+</sup> , entry point HBV/HDV |
| IGSF6      | $3\mathrm{h}$  | 5  | -3.72      | 19.03   | 1.44    | 5        | 5    | 3   | 2   | immunoglobulin                                  |
| MAP6       | $23\mathrm{h}$ | 15 | 3.56       | 0.97    | 11.48   | 13       | 3    | 6   | 6   | microtubule associated protein                  |
| TMEM27     | $23\mathrm{h}$ | 16 | -3.55      | 23.1    | 1.97    | 29       | 14   | 4   | 3   | transmembrane                                   |
| TMOD4      | $23\mathrm{h}$ | 17 | 3.53       | 10.37   | 119.62  | 4        | 6    | 17  | 29  | tropomodulin, related muscle actin              |
| GRIN2D     | $23\mathrm{h}$ | 19 | -3.25      | 63.38   | 6.66    | 10       | 7    | 5   | 5   | glutamate receptor                              |
| CLEC4A     | $23\mathrm{h}$ | 20 | -3.24      | 24.01   | 2.54    | 6        | 9    | 7   | 4   | cell-cell, immune system                        |
| UBC        | $23\mathrm{h}$ | 24 | -3.14      | 31161.4 | 3539.27 | 12040    | 4245 | 774 | 554 | ubiquitin                                       |
| CEP72      | $23\mathrm{h}$ | 25 | -3.11      | 1003.72 | 116.45  | 115      | 52   | 21  | 23  | microtubuli, centromer                          |
| MAST4      | $23\mathrm{h}$ | 26 | 3.11       | 602.04  | 5186.53 | 31       | 44   | 168 | 84  | microtubuli                                     |
| ELF3       | $23\mathrm{h}$ | 27 | -3.1       | 1012.45 | 118.16  | 218      | 66   | 19  | 30  | TF, effector of ERBB2 pathway                   |
| GLDN       | $23\mathrm{h}$ | 28 | -3.06      | 28.62   | 3.44    | 7        | 7    | 21  | 5   | Ranvier nodes along muelinated axons            |
| TRAF4      | $3\mathrm{h}$  | 15 | -2.32      | 1743.78 | 348.73  | 731      | 201  | 97  | 136 | activation of $NF\kappa B$ + MAPKs              |
| PLIN2      | $23\mathrm{h}$ | 54 | -2.24      | 4646.53 | 983.85  | 1199     | 473  | 152 | 209 | lipid storage                                   |
| TRIB1      | $3\mathrm{h}$  | 17 | -2.18      | 909.52  | 201.26  | 296      | 147  | 118 | 70  | Ser/Thr protein kinase                          |

Supplementary Table 10: Comparison of filovirus infection to Mock samples (EBOV and MARV as replicates). Comparison of filovirus (EBOV and MARV treated as replicates) infected samples at 23 h p.i. against Mock samples ( $3 \, \text{h}$ ,  $7 \, \text{h}$  and  $23 \, \text{h}$  treated as replicates) of human cell samples (padj < 0.1), to find genes differentially expressed in both filovirus-infected cells compared to Mock. Genes sorted by the maximum fold change and filtered manually for interesting hits. Abbreviations as in STab. 9. For the complete table, see the electronic supplement.

|         |      |            | norm_reads    |                   |                  | $read_max$         |                 |                                 |
|---------|------|------------|---------------|-------------------|------------------|--------------------|-----------------|---------------------------------|
| Gene    | Rank | $FC_{max}$ | $MO_{3,7,23}$ | $EV_{23}+MV_{23}$ | $MO_{read\_max}$ | $ EV_{read\_max} $ | $MV_{read_max}$ | Function                        |
| SBK3    | 1    | 4.68       | 2.02          | 51.73             | 2                | 11                 | 6               | kinase                          |
| SULT1E1 | 2    | -4.56      | 25.56         | 1.09              | 6                | 7                  | 4               | sulfotransferase                |
| PLAU    | 4    | -3.91      | 175.46        | 11.7              | 33               | 29                 | 23              | urokinase, degra. of ex. matrix |
| FMNL1   | 8    | 3.67       | 35.67         | 455.05            | 5                | 47                 | 25              | cytokinese                      |
| ANXA3   | 20   | 2.79       | 226.65        | 1562.27           | 66               | 296                | 173             | cell growth                     |
| MYCNOS  | 21   | -2.74      | 296.44        | 44.27             | 73               | 57                 | 75              | viral related oncogene          |
| MYCN    | 31   | -2.44      | 3825.08       | 702.93            | 373              | 340                | 322             | transcription factor            |
| CYP1A1  | 32   | -2.44      | 2652.15       | 489.17            | 236              | 395                | 562             | cytochrome p450, electron       |
| GDF15   | 43   | 2.24       | 404.62        | 1915.81           | 84               | 431                | 332             | cell growth, inflammation       |
| PEG10   | 53   | -2.09      | 148275.9      | 34921.14          | 6192             | 7865               | 6568            | retrotransposon-derived protein |
| SKP2    | 66   | -1.92      | 14370.05      | 3798.2            | 1621             | 1233               | 1536            | s-phase kinase-associated       |

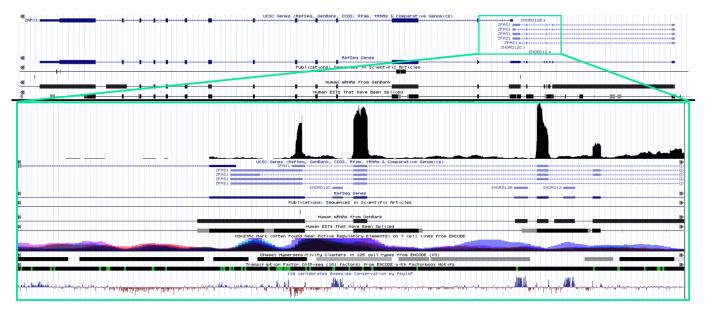
Supplementary Table 11: Expression of genes involved in IFN-induction and -signaling. The IFN signaling pathway and the induced antiviral effector proteins are important antiviral defence mechanisms  $^1$ . We checked the expression of genes involved in IFN signal transduction, immune/antiviral response and ISGylation for differential expression during EBOV and MARV infection. We found many genes to be not expressed (*IFIH1*, *IRF7*, *GBP1*, *IFI16*, *IFI27*, *IFI35*, *IFI44*, *IFI44L*, *IFIITM1*, *IFITM2*, *OAS1*, *OAS2*, *OAS3*, *OASL*, *TRIM21* and *HERC6*). However, several genes were up-regulated between 3 h and 7 h p.i. and down-regulated between 7 h and 23 h p.i. (*STAT-1*, *STAT-2*, *ADAR*, *IFIT1*, *IFIT5*, *MX1*, *MX2*, *TRIM22*, *TRIM25*, *UBE2L6* and *USP18*). Listed genes were selected according to Weber *et al.*  $^1$ . First characters refer to the expression between 3 h and 7 h p.i., second characters to the expression between 7 h and 23 h p.i. Numbers correspond to the read maximum of the sample.  $\uparrow$  – up-regulated;  $\downarrow$  – down-regulated; = – equal expression; 0 – no expression. Numbers preceding arrows indicate up-/down-regulation for more than 200 % (2 – 200 %, 3 – 300 % and so on).


| Category/gene    |                        |                     | Hur                          | Human |                        |      |                        | Bat |                       |     |                          |     |  |
|------------------|------------------------|---------------------|------------------------------|-------|------------------------|------|------------------------|-----|-----------------------|-----|--------------------------|-----|--|
| 0 0,0            | MO                     | $\operatorname{CK}$ | EB                           | OV    | MA                     | RV   | MO                     | CK  | EB                    | OV  | MARV                     |     |  |
| IFN signal trans | duction                | on                  |                              |       |                        |      |                        |     |                       |     |                          |     |  |
| DDX58 (RIG-I)    | =↑                     | 112                 | $\uparrow\uparrow$           | 156   | =↑                     | 133  | 00                     | 4   | 00                    | 8   | $4\uparrow\downarrow$    | 11  |  |
| IFIH1 (MDA5)     | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IRF7             | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IRF9             | <b> </b>               | 53                  | <b>│</b>                     | 123   | $\uparrow\downarrow$   | 74   | NA                     | _   | NA                    | _   | NA                       | _   |  |
| NMI              | $\uparrow_2\downarrow$ | 24                  | ==                           | 18    | $=\downarrow$          | 21   | <b>\</b>               | 244 | $\downarrow =$        | 179 | ==                       | 184 |  |
| STAT-1           | $=\downarrow$          | 343                 | ^↓                           | 389   | $=_2\downarrow$        | 433  | ==                     | 200 | =↑                    | 231 | <b>↑</b> =               | 250 |  |
| STAT-2           | <b> </b>               | 76                  | $_{2}\uparrow_{2}\downarrow$ | 88    | <b>↑</b> =             | 79   | ==                     | 74  | $\downarrow =$        | 50  | <b>↑</b> =               | 84  |  |
| STAT-3           | $\uparrow\downarrow$   | 166                 | <b>↑</b> =                   | 203   | $\uparrow \downarrow$  | 183  | ==                     | 242 | =↑                    | 318 | <b>†</b> =               | 256 |  |
| Immune/antivira  | al resp                | onse                |                              |       |                        |      |                        |     | ļ.                    |     |                          |     |  |
| ADAR             | ==                     | 1041                | $\uparrow_2\downarrow$       | 1320  | =\                     | 1329 | $\downarrow =$         | 164 | ↓↑                    | 118 | $\uparrow \uparrow$      | 150 |  |
| EIF2AK2 (PKR)    | $\downarrow\downarrow$ | 122                 | =↑                           | 107   | $=\downarrow$          | 111  | NA                     | _   | NA                    | _   | NA                       | _   |  |
| GBP1             | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFI16            | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFI27            | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFI35            | $\downarrow =$         | 199                 | =↑                           | 275   | <b>†</b> =             | 325  | ↑0                     | 16  | $\uparrow\downarrow$  | 11  | $\uparrow \uparrow$      | 15  |  |
| IFI44            | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFI44L           | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFIT1            | $\uparrow\uparrow$     | 260                 | $\uparrow_4\downarrow$       | 245   | $\uparrow\downarrow$   | 273  | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFIT5            | $\downarrow\downarrow$ | 59                  | $=_3\downarrow$              | 41    | $=\downarrow$          | 55   | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFITM1           | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFITM2           | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| IFITM3           | $=\downarrow$          | 15                  | $0_3\uparrow$                | 24    | $=\downarrow$          | 14   | NA                     | _   | NA                    | _   | NA                       | _   |  |
| MX1              | 00                     | _                   | ↑↓                           | 22    | $\uparrow_2\downarrow$ | 22   | =↑                     | 150 | ↓↑                    | 159 | $_2\uparrow\uparrow$     | 268 |  |
| MX2              | <b>↑</b> =             | 241                 | ↑↓                           | 271   | $\uparrow\downarrow$   | 343  | <b>↑</b> =             | 134 | ↓↑                    | 156 | $_2\uparrow\uparrow$     | 256 |  |
| OAS1             | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| OAS2             | 00                     | _                   | 00                           | _     | 00                     | _    | 00                     | _   | 00                    | _   | 00                       | _   |  |
| OAS3             | 00                     | _                   | 00                           | _     | 00                     | _    | NA                     | _   | NA                    | _   | NA                       | _   |  |
| OASL             | 00                     | _                   | 00                           | _     | 00                     | _    | $\downarrow 2 =$       | 15  | 00                    | 9   | $\uparrow\uparrow$       | 19  |  |
| PLSCR1           | ↓↑                     | 51                  |                              | 47    | <b>†</b> =             | 48   | NA                     | _   | NA                    | _   | NA                       | _   |  |
| RSAD2 (Cig5)     | 00                     | _                   | 00                           | _     | 00                     | _    | 00                     | _   | 00                    | _   | 00                       | _   |  |
| SP100            | $_2\uparrow =$         | 26                  | <u> </u>                     | 44    | ==                     | 34   | $\downarrow \uparrow$  | 84  | =                     | 93  | $\uparrow\uparrow$       | 115 |  |
| PMP22            | $\uparrow\downarrow$   | 15                  | $\uparrow\uparrow$           | 16    | $=\downarrow$          | 17   | NA                     | _   | NA                    | _   | NA                       | _   |  |
| Ubiquitylation a | nd IS                  | Gylat               | ion                          |       |                        |      |                        |     |                       |     |                          |     |  |
| HERC5            | $\downarrow =$         | 14                  | <b>↑</b> =                   | 16    | ==                     | 11   | $\downarrow \uparrow$  | 24  | $\downarrow \uparrow$ | 23  | <b>†=</b>                | 23  |  |
| HERC6            | 00                     | _                   | 00                           | _     | 00                     | _    | $\downarrow\downarrow$ | 45  | <b>↓</b> =            | 46  | ==                       | 40  |  |
| ISG15            | 00                     | _                   | $=_4\uparrow$                | 36    | 0=                     | 11   | NA                     | _   | NA                    | _   | NA                       | _   |  |
| UBE2L6           | <b>†</b> =             | 89                  | ^↓                           | 76    | $\uparrow_3\downarrow$ | 117  | $\downarrow \uparrow$  | 20  | $\uparrow\downarrow$  | 22  | $_3\downarrow_3\uparrow$ | 24  |  |
| USP18            | <b>↑</b> =             | 70                  | $\uparrow_2\downarrow$       | 106   | $\uparrow\downarrow$   | 77   | NA                     | _   | NA                    | -   | NA                       | _   |  |

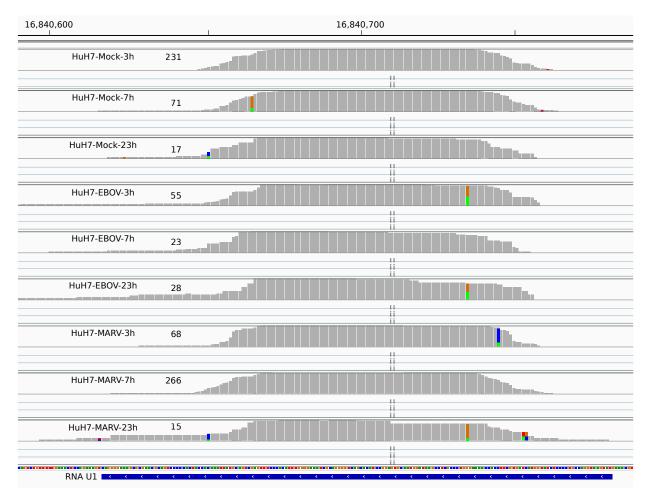
Supplementary Table 12: **The most regulated TRIM genes.** TRIM proteins were recently reviewed by Ozato et al.<sup>2</sup>. They represent a superfamily of tripartite motif-containing proteins with more than 60 members from which several are known to be required for the restriction of lentivirus infections. Based on their emerging role in innate immunity, we investigated their features. We identified at least 11 TRIM genes (TRIM2, 6, 8, 15, 16L, 25, 32, 34, 38, 45, 47, 54, 67, 71) to be differentially regulated. TRIM14, 21 and 22 were not reported to be differentially expressed, but show interesting features in a small level of transcripts (see electronic supplement). Classical fold change values are reported in the electronic supplement. EV – EBOV; hum – human; read\_max – maximum number of reads mapping to one nucleotide position of this gene.

|          |          | re            | ad_ma         | ax             |                                                                             |
|----------|----------|---------------|---------------|----------------|-----------------------------------------------------------------------------|
| TRIM     | Sample   | $3\mathrm{h}$ | $7\mathrm{h}$ | $23\mathrm{h}$ | Remarks                                                                     |
| TRIM2    | hum-EV   | 143           | 184           | 164            | TRIM2 localizes to cytoplasmic filaments                                    |
|          | bat-EV   | 106           | 99            | 110            | V 1                                                                         |
| TRIM6    | hum-EV   | 85            | 104           | 57             | Down-regulation for EBOV 23 h, a read-through transcript from               |
|          |          |               |               |                | this gene into the downstream TRIM34 gene has been observed,                |
|          |          |               |               |                | which is here not the case                                                  |
|          | bat-EV   | NA            | NA            | NA             |                                                                             |
| TRIM8    | hum-EV   | 120           | 116           | 383            | TRIM8 localizes to nuclear bodies; strong up-regulation for                 |
|          |          |               |               |                | EBOV 23 h                                                                   |
|          | bat-EV   | 437           | 648           | 523            |                                                                             |
| TRIM14   | hum-EV   | 107           | 160           | 223            |                                                                             |
|          | bat-EV   | 15            | 23            | 24             |                                                                             |
| TRIM15   | hum-EV   | 10            | 12            | 33             | TRIM15 localizes to the cytoplasm                                           |
|          | bat-EV   | NA            | NA            | NA             |                                                                             |
| TRIM16L  | hum-EV   | 32            | 26            | 15             |                                                                             |
|          | bat-EV   | 109           | 119           | 200            | putative homolog                                                            |
| TRIM21   | hum-EV   | <10           | <10           | <10            |                                                                             |
|          | bat-EV   | 45            | 48            | 62             |                                                                             |
| TRIM22   | hum-EV   | 84            | 160           | 83             |                                                                             |
|          | bat-EV   | 60            | 68            | 73             |                                                                             |
| TRIM25   | hum-EV   | 80            | 103           | 26             | TRIM25 localizes to the cytoplasm; interacts with DDX58; simi-              |
|          |          |               |               |                | lar pattern after MARV infection, containing mir-3614 in 3'UTR              |
|          | bat-EV   | 319           | 255           | 299            | a much higher and constant level of transcription than human                |
|          |          |               |               |                | cells                                                                       |
| TRIM32   | hum-EV   | 65            | 63            | 34             | TRIM32 localizes to cytoplasmic bodies; Mock 23 h & EBOV 23 h               |
|          |          |               |               |                | down-regulated, MARV 23 h up-regulated (read_max:142)                       |
|          | bat-EV   | 128           | 111           | 120            |                                                                             |
| TRIM34   | hum-EV   | 9             | 13            | 11             | here no read-through transcript from the upstream TRIM6 gene                |
|          | bat-EV   | NA            | NA            | NA             |                                                                             |
| TRIM38   | hum-EV   | 14            | 15            | 14             | almost no expression                                                        |
|          | bat-EV   | NA            | NA            | NA             |                                                                             |
| TRIM45   | hum-EV   | 11            | 19            | 15             | TRIM45 may function as a transcriptional repressor of the                   |
|          | 1        | 4.0           | 0.0           | ٠.             | mitogen-activated protein kinase pathway almost no expression               |
| TD D C C | bat-EV   | 46            | 30            | 54             | putative homolog                                                            |
| TRIM47   | hum-EV   | 12            | 18            | 17             | almost no expression                                                        |
| TD 11454 | bat-EV   | 26            | 23            | 25             | putative homolog                                                            |
| TRIM54   | hum-EV   | 0             | 0             | 0              | may be important for the regulation of titin kinase and                     |
|          |          |               |               |                | microtubule-dependent signal pathways in striatedmuscles; no ex-            |
|          | 1 / 1737 | NT A          | 73. T. A      | TAT A          | pression                                                                    |
| TID IMC  | bat-EV   | NA            | NA            | NA             | 1 / 1 · EDOV 71                                                             |
| TRIM67   | hum-EV   | 17            | 39            | 41             | up-regulated in EBOV 7 h                                                    |
| TDIMEO   | bat-EV   | NA            | NA            | NA             | Only the first two evens are two perilled a selling and                     |
| TRIM69   | hum-EV   | 10<br>N.A     | 14<br>N. A    | 18<br>N.A      | Only the first two exons are transcribed, possibly a splice variant         |
| TDIMM1   | bat-EV   | NA<br>506     | NA            | NA             | No homolog in Pva and Rae                                                   |
| TRIM71   | hum-EV   | 506           | 860           | 283            | E3 ubiquitin protein ligase; MARV-infected cells stay at about read_max=750 |
|          | bat-EV   | 0             | 0             | 0              | 15au_111ax — 100                                                            |
|          | Dat-E V  | U             | U             | U              |                                                                             |

Supplementary Table 13: **Novel genes related to filovirus infection.** During our analysis we detected several hundreds of novel genomic positions in the human genome being highly differentially expressed during infection with EBOV. Here we list some novel detected genomic locations, highly differentially expressed in human cells. For a detailed view of novel genomic locations detected by Cufflinks, see the electronic supplement.


| Chromosome | Start       | End         | ID                         |
|------------|-------------|-------------|----------------------------|
| chr8       | 81,451,919  | 81,455,328  | XLOC_016935                |
| chr19      | 45,972,675  | 45,973,389  | XLOC_009107                |
| chr6       | 155,282,269 | 155,284,746 | XLOC_15377                 |
| chr19      | 564,029     | ,           | XLOC_008950                |
| chr18      | 56,113,047  | 56,118,281  | XLOC_007908                |
| chr15      | 23,265,433  | 23,267,219  | XLOC_005909                |
| chr9       | 68,429,835  | 68,430,526  | XLOC_017600                |
| chr11      | 46,450,144  | 46,450,791  | AMBRA1 intronic transcript |




Supplementary Figure 1: **A novel gene.** UCSC screen of XLOC\_008950 which encodes a putative novel ncRNA (framed locus). The transcription tracks show moderate expression of this locus in the human Mock and MARV-infected cells (green and blue, respectively). For EBOV-infected cells (red), expression was not detectable at 23 h p.i..

## Non-coding RNAs

We investigated 103 human annotated ncRNAs manually. DESeq identified 20 of them, to be differentially expressed. From these 20 ncRNAs, more than three quarters are miRNAs (11) and snoRNAs (5) followed by three antisense RNAs of UCKL1, CDKN2B, AFAP1. A manual inspection refused the antisense RNAs to play a major role in EBOV and MARV infection.



Supplementary Figure 2: **The** *ZNFX1* and *ZFAS* **genes.** UCSC screenshot of *ZNFX1* and *ZFAS* regulated by a bidirectional promoter. The *ZNFX1* antisense RNA 1 (*ZFAS1*) is expressed and possibly a regulator of *ZNFX1*<sup>3</sup>. For MARV infection, a lower expression level in the 23 h sample could be observed. Remarkable is the bidirectional promoter for the *ZNFX1* gene and the antisense RNA (asRNA) itself.



Supplementary Figure 3: **The U1 snRNA gene.** IGV screenshot of RNA U1 small nuclear 1, which is an essential component of the spliceosome as it is responsible for pre-mRNA splicing. The 5' end of this snRNA base pairs with the 5' splice site. Further snRNAs (U2, U4, U5 and U6) are needed the remove the intron and ligate the exons <sup>4</sup>. We observed differential expression for the gene encoding the U1 snRNA. Most transcripts (266 reads) were detected in the 7h sample of cells infected with MARV, whereas for the 23h sample only 15 reads were mapped. High expression was also found for the Mock-3h cells (231 reads). For the other time points of the wildtype less transcripts were observed (71 & 17 reads). Furthermore there were some single nucleotide mutations. For the 3h EBOV, 23h EBOV and 23h MARV sample the Guanine at 16,840,734 was replaced by Adenine (G-to-A:46%,46%,17%). For the 7h Mock in 22% of the 55 reads the Guanine was replaced by an Adenine at 16,840,734, in the 3h MARV sample at position 16,840,744 and 25% of the 60 mapped transcripts had an Adenine instead of Cytosine. In the electronic supplement, we report differences between samples even on nucleotide level.

Supplementary Table 14: Overview of the significantly enriched pathways during EBOV and MARV infection. Down-regulated (left) and up-regulated (right) pathways for the conditions Mock versus EBOV and Mock versus MARV for the time points 3 h, 7 h and 23 h. All pathways are enriched in at least three samples. For each pathway only the time points with significant changes together with their corresponding adjusted p-values are listed. The different gray scales represent the significance level of the p-values, from 0.1 (light), 0.05 (middle) and 0.001 (dark).

| Pathway                             | Enriched samples ( $\times 0.01$ ) |                |        |        |        |        |              |    |        |      |        |        |
|-------------------------------------|------------------------------------|----------------|--------|--------|--------|--------|--------------|----|--------|------|--------|--------|
|                                     |                                    | down-regulated |        |        |        |        | up-regulated |    |        |      |        |        |
|                                     | EBOV                               |                |        | MARV   |        |        | EBOV         |    |        | MARV |        |        |
|                                     | 3h                                 | 7h             | 23h    | 3h     | 7h     | 23h    | 3h           | 7h | 23h    | 3h   | 7h     | 23h    |
| MAPK signaling pathway              |                                    |                |        | 0.0308 |        |        |              |    | 0.0002 |      | 0.0108 | 0.0357 |
| Focal adhesion                      |                                    |                |        | 0.0495 |        |        |              |    | 0.0078 |      | 0.0309 | 0.0357 |
| Complement and coagulation cascades |                                    |                | 0.0043 | 0.0308 | 0.0131 | 0.0015 | 0.0207       |    |        |      |        |        |
| Cell cycle                          |                                    | 0.0001         | 0.0383 |        |        | 0.0029 |              |    |        |      |        |        |
| Peroxisome                          |                                    |                | 0.0108 |        | 0.0049 | 0.0115 |              |    |        |      |        |        |
| Steroid hormone biosynthsesis       |                                    |                |        |        |        |        | 0.0059       |    |        |      | 0.0433 | 0.0213 |

## References

- [1] Kuri, T. et al. Interferon priming enables cells to partially overturn the SARS coronavirus-induced block in innate immune activation. J. Gen. Virol. **90**, 2686–2694 (2009).
- [2] Ozato, K., Shin, D. M., Chang, T. H. & Morse, H. C. TRIM family proteins and their emerging roles in innate immunity. *Nat. Rev. Immunol.* **8**, 849–860 (2008).
- [3] Askarian-Amiri, M. E. et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17, 878–891 (2011).
- [4] O'Reilly, D. et al. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 23, 281-291 (2013). URL http://www.hubmed.org/display.cgi?uids=23070852.